RAKE算法原理介绍-rakesh怎么读

RAKE简介

RAKE英文全称为Rapid Automatic keyword extraction,中文称为快速自动关键字提取,是一种非常高效的关键字提取算法,可对单个文档进行操作,以实现对动态集合的应用,也可非常轻松地应用于新域,并且在处理多种类型的文档时也非常有效。RAKE算法原理介绍-rakesh怎么读

2

算法思想

RAKE算法用来做关键词(keyword)的提取,实际上提取的是关键的短语(phrase),并且倾向于较长的短语,在英文中,关键词通常包括多个单词,但很少包含标点符号和停用词,例如and,the,of等,以及其他不包含语义信息的单词。

RAKE算法首先使用标点符号(如半角的句号、问号、感叹号、逗号等)将一篇文档分成若干分句,然后对于每一个分句,使用停用词作为分隔符将分句分为若干短语,这些短语作为最终提取出的关键词的候选词。

最后,每个短语可以再通过空格分为若干个单词,可以通过给每个单词赋予一个得分,通过累加得到每个短语的得分。一个关键点在于将这个短语中每个单词的共现关系考虑进去。最终定义的公式是:

3

算法步骤

(1)算法首先对句子进行分词,分词后去除停用词,根据停 用词划分短语;

(2)之后计算每一个词在短语的共现词数,并构建 词共现矩阵;

(3)共现矩阵的每一列的值即为该词的度deg(是一个网络中的概念,每与一个单词共现在一个短语中,度就加1,考虑该单词本身),每个词在文本中出现的次数即为频率freq;

(4)得分score为度deg与频率 freq的商,score越大则该词更重 ;

(5)最后按照得分的大小值降序 输出该词所在的短语。

RAKE算法原理介绍-rakesh怎么读

下面我们以一个中文例子具体解释RAKE算法原理,例如“系统有声音,但系统托盘的音量小喇叭图标不见了”,经过分词、去除停用词处理 后得到的词集W = {系统,声音,托盘,音量,小喇叭,图标,不见},短语集D={系统,声音,系统托盘,音量小喇叭图标不见},词共现矩阵如表:RAKE算法原理介绍-rakesh怎么读

每一个词的度为deg={“系统”:2,“声音”:1,“托盘”:1; “音量” :3; “小喇叭” :3,“图标” :3,“不见” :3},频率freq = { “系统” :2, “声音” :1, “托盘” :1 ;“音量” :1;“小喇叭” :1, “图标”丄“不见” :1}, score ={“系统”:1,“声音”:1,“托 盘” :1 ;“音量” :1小喇叭” :3, “图标” :3, “不见” :3 },输出结果为{音量小喇叭图标不见 ,系统托盘,系统,声音}

4

代码实现

importstring fromtypingimportDict,List,Set,Tuple PUNCTUATION=string.punctuation.replace(,)#Donotuseapostropheasadelimiter ENGLISH_WORDS_STOPLIST:List[str]=[ (,),and,of,the,amongst,with,from,after,its,it,at,is, this,,,.,be,in,that,an,other,than,also,are,may,suggests, all,where,most,against,more,have,been,several,as,before, although,yet,likely,rather,over,a,for,can,these,considered, used,types,given,precedes, ] defsplit_to_tokens(text:str)->List[str]: Splittextstringtotokens. Behaviorissimilartostr.split(), butemptylinesareomittedandpunctuationmarksareseparatedfromword. Example: split_to_tokens(JohnsaidHey!(andsomeotherwords.))-> ->[John,said,,Hey,!,,(,and,some,other,words,.,)] result=[] foritemintext.split(): whileitem[0]inPUNCTUATION: result.append(item[0]) item=item[1:] foriinrange(len(item)): ifitem[-i-1]notinPUNCTUATION: break ifi==0: result.append(item) else: result.append(item[:-i]) result.extend(item[-i:]) return[itemforiteminresultifitem] defsplit_tokens_to_phrases(tokens:List[str],stoplist:List[str]=None)->List[str]: “”” Mergetokensintophrases,delimitedbyitemsfromstoplist. Phraseisasequenceoftokenthathasthefollowingproperties: -phrasecontains1ormoretokens -tokensfromphrasegoinarow -phrasedoesnotcontaindelimitersfromstoplist -eithertheprevious(notinaphrase)tokenbelongstostoplistoritisthebeginningoftokenslist -eitherthenext(notinaphrase)tokenbelongstostoplistoritistheendoftokenslist Example: split_tokens_to_phrases( tokens=[Mary,and,John,,,some,words,(,and,other,words,)], stoplist=[and,,,.,(,)])-> ->[Mary,John,somewords,otherwords] “”” ifstoplistisNone: stoplist=ENGLISH_WORDS_STOPLIST stoplist+=list(PUNCTUATION) current_phrase:List[str]=[] all_phrases:List[str]=[] stoplist_set:Set[str]={stopword.lower()forstopwordinstoplist} fortokenintokens: iftoken.lower()instoplist_set: ifcurrent_phrase: all_phrases.append(.join(current_phrase)) current_phrase=[] else: current_phrase.append(token) ifcurrent_phrase: all_phrases.append(.join(current_phrase)) returnall_phrases defget_cooccurrence_graph(phrases:List[str])->Dict[str,Dict[str,int]]: “”” Getgraphthatstorescooccurenceoftokensinphrases. Matrixisstoredasdict, wherekeyistoken,valueisdict(keyissecondtoken,valueisnumberofcooccurrence). Example: get_occurrence_graph([Mary,John,somewords,otherwords])->{ mary:{mary:1}, john:{john:1}, some:{some:1,words:1}, words:{some:1,words:2,other:1}, other:{other:1,words:1} } “”” graph:Dict[str,Dict[str,int]]={} forphraseinphrases: forfirst_tokeninphrase.lower().split(): forsecond_tokeninphrase.lower().split(): iffirst_tokennotingraph: graph[first_token]={} graph[first_token][second_token]=graph[first_token].get(second_token,0)+1 returngraph defget_degrees(cooccurrence_graph:Dict[str,Dict[str,int]])->Dict[str,int]: “”” Getdegreesforalltokensbycooccurrencegraph. Resultisstoredasdict, wherekeyistoken,valueisdegree(sumoflengthsofphrasesthatcontainthetoken). Example: get_degrees( { mary:{mary:1}, john:{john:1}, some:{some:1,words:1}, words:{some:1,words:2,other:1}, other:{other:1,words:1} } )->{mary:1,john:1,some:2,words:4,other:2} “”” return{token:sum(cooccurrence_graph[token].values())fortokenincooccurrence_graph} defget_frequencies(cooccurrence_graph:Dict[str,Dict[str,int]])->Dict[str,int]: “”” Getfrequenciesforalltokensbycooccurrencegraph. Resultisstoredasdict, wherekeyistoken,valueisfrequency(numberoftimesthetokenoccurs). Example: get_frequencies( { mary:{mary:1}, john:{john:1}, some:{some:1,words:1}, words:{some:1,words:2,other:1}, other:{other:1,words:1} } )->{mary:1,john:1,some:1,words:2,other:1} “”” return{token:cooccurrence_graph[token][token]fortokenincooccurrence_graph} defget_ranked_phrases(phrases:List[str],*, degrees:Dict[str,int], frequencies:Dict[str,int])->List[Tuple[str,float]]: “”” GetRAKEmeasureforeveryphrase. Resultisstoredaslistoftuples,everytuplecontainsofphraseanditsRAKEmeasure. Itemsaresortednon-ascendingbyRAKEmeasure,thanalphabeticallybyphrase. “”” processed_phrases:Set[str]=set() ranked_phrases:List[Tuple[str,float]]=[] forphraseinphrases: lowered_phrase=phrase.lower() iflowered_phraseinprocessed_phrases: continue score:float=sum(degrees[token]/frequencies[token]fortokeninlowered_phrase.split()) ranked_phrases.append((lowered_phrase,round(score,2))) processed_phrases.add(lowered_phrase) #Sortbyscorethanbyphrasealphabetically. ranked_phrases.sort(key=lambdaitem:(-item[1],item[0])) returnranked_phrases defrake_text(text:str)->List[Tuple[str,float]]: “”” GetRAKEmeasureforeveryphraseintextstring. Resultisstoredaslistoftuples,everytuplecontainsofphraseanditsRAKEmeasure. Itemsaresortednon-ascendingbyRAKEmeasure,thanalphabeticallybyphrase. “”” tokens:List[str]=split_to_tokens(text) phrases:List[str]=split_tokens_to_phrases(tokens) cooccurrence:Dict[str,Dict[str,int]]=get_cooccurrence_graph(phrases) degrees:Dict[str,int]=get_degrees(cooccurrence) frequencies:Dict[str,int]=get_frequencies(cooccurrence) ranked_result:List[Tuple[str,float]]=get_ranked_phrases(phrases,degrees=degrees,frequencies=frequencies) returnranked_result

执行效果:

if__name__==__main__: text=Mercy-classincludesUSNSMercyandUSNSComforthospitalships.Credit:USNavyphotoMassCommunicationSpecialist1stClassJasonPastrick.TheUSNavalAirWarfareCenterAircraftDivision(NAWCAD)LakehurstinNewJerseyisusinganadditivemanufacturingprocesstomakefaceshields……… ranked_result=rake_text(text) print(ranked_result)

关键短语抽取效果如下:

[ (additivemanufacturingprocesstomakefaceshields.the3dprintingfaceshields,100.4), (usnavyphotomasscommunicationspecialist1stclassjasonpastrick,98.33), (usnavy’smercy-classhospitalshipusnscomfort.currentlystationed,53.33), … ]
审核编辑:彭静

免责声明:文章内容来自互联网,本站不对其真实性负责,也不承担任何法律责任,如有侵权等情况,请与本站联系删除。
转载请注明出处:RAKE算法原理介绍-rakesh怎么读 https://www.yhzz.com.cn/a/8203.html

上一篇 2023-04-19
下一篇 2023-04-19

相关推荐

联系云恒

在线留言: 我要留言
客服热线:400-600-0310
工作时间:周一至周六,08:30-17:30,节假日休息。