【安全算法之SHA512】SHA512摘要运算的C语言源码实现
概述 头文件定义 C语言版本的实现源码 测试用例 github仓库 更多参考链接概述
大家都知道摘要算法在安全领域,也是一个特别重要的存在,而SHA512是其中比较常见的一种摘要算法,它的特点就是计算复杂度较低,不等长的数据原文输入,可以得出等长的摘要值,这个值是固定为64字节。正是由于这种特殊性,很多重要的数据完整性校验领域,都可以看到SHAxxx的影子。由于它的摘要值长度比较长,且相对于其他SHA算法,它的计算复杂度会高些,所以使用场景不算特别多。
今天给大家带来SHA512的C源码版本实现,欢迎大家深入学习和讨论。头文件定义
头文件定义如下,主要定义了SHA512的上下文结构体,以及导出的三个API:
复制 #ifndef __SHA512_H__ #define __SHA512_H__ #include #define SHA512_DIGEST_LEN 64 // SHA512 outputs a 64 byte digest typedef struct _sha512_ctx_t { uint64_t total[2]; /*!< number of bytes processed */ uint64_t state[8]; /*!< intermediate digest state */ uint8_t buffer[128]; /*!< data block being processed */ int32_t is_384; /*!< 0 => SHA-512, else SHA-384 */ } sha512_ctx_t; void crypto_sha512_init(sha512_ctx_t *ctx); void crypto_sha512_update(sha512_ctx_t *ctx, const uint8_t *data, uint32_t len); void crypto_sha512_final(sha512_ctx_t *ctx, uint8_t *digest); #endif // __SHA512_H__C语言版本的实现源码
下面是SHA512的C语言版本实现,主要也是围绕导出的3个API:
复制 #include #include “sha512.h” #if defined(_MSC_VER) || defined(__WATCOMC__) #define UL64(x) x##ui64 #else #define UL64(x) x##ULL #endif #define SHA512_VALIDATE_RET(cond) \ do { \ if( !(cond) ) \ { \ return( -1 ); \ } \ } while( 0 ) #define SHA512_VALIDATE(cond) \ do { \ if( !(cond) ) \ { \ return; \ } \ } while( 0 ) /* * 64-bit integer manipulation macros (big endian) */ #ifndef GET_UINT64_BE #define GET_UINT64_BE(n,b,i) \ { \ (n) = ( (uint64_t) (b)[(i) ] << 56 ) \ | ( (uint64_t) (b)[(i) + 1] << 48 ) \ | ( (uint64_t) (b)[(i) + 2] << 40 ) \ | ( (uint64_t) (b)[(i) + 3] << 32 ) \ | ( (uint64_t) (b)[(i) + 4] << 24 ) \ | ( (uint64_t) (b)[(i) + 5] << 16 ) \ | ( (uint64_t) (b)[(i) + 6] << 8 ) \ | ( (uint64_t) (b)[(i) + 7] ); \ } #endif /* GET_UINT64_BE */ #ifndef PUT_UINT64_BE #define PUT_UINT64_BE(n,b,i) \ { \ (b)[(i) ] = (uint8_t) ( (n) >> 56 ); \ (b)[(i) + 1] = (uint8_t) ( (n) >> 48 ); \ (b)[(i) + 2] = (uint8_t) ( (n) >> 40 ); \ (b)[(i) + 3] = (uint8_t) ( (n) >> 32 ); \ (b)[(i) + 4] = (uint8_t) ( (n) >> 24 ); \ (b)[(i) + 5] = (uint8_t) ( (n) >> 16 ); \ (b)[(i) + 6] = (uint8_t) ( (n) >> 8 ); \ (b)[(i) + 7] = (uint8_t) ( (n) ); \ } #endif /* PUT_UINT64_BE */ /* * Round constants */ static const uint64_t K[80] = { UL64(0x428A2F98D728AE22), UL64(0x7137449123EF65CD), UL64(0xB5C0FBCFEC4D3B2F), UL64(0xE9B5DBA58189DBBC), UL64(0x3956C25BF348B538), UL64(0x59F111F1B605D019), UL64(0x923F82A4AF194F9B), UL64(0xAB1C5ED5DA6D8118), UL64(0xD807AA98A3030242), UL64(0x12835B0145706FBE), UL64(0x243185BE4EE4B28C), UL64(0x550C7DC3D5FFB4E2), UL64(0x72BE5D74F27B896F), UL64(0x80DEB1FE3B1696B1), UL64(0x9BDC06A725C71235), UL64(0xC19BF174CF692694), UL64(0xE49B69C19EF14AD2), UL64(0xEFBE4786384F25E3), UL64(0x0FC19DC68B8CD5B5), UL64(0x240CA1CC77AC9C65), UL64(0x2DE92C6F592B0275), UL64(0x4A7484AA6EA6E483), UL64(0x5CB0A9DCBD41FBD4), UL64(0x76F988DA831153B5), UL64(0x983E5152EE66DFAB), UL64(0xA831C66D2DB43210), UL64(0xB00327C898FB213F), UL64(0xBF597FC7BEEF0EE4), UL64(0xC6E00BF33DA88FC2), UL64(0xD5A79147930AA725), UL64(0x06CA6351E003826F), UL64(0x142929670A0E6E70), UL64(0x27B70A8546D22FFC), UL64(0x2E1B21385C26C926), UL64(0x4D2C6DFC5AC42AED), UL64(0x53380D139D95B3DF), UL64(0x650A73548BAF63DE), UL64(0x766A0ABB3C77B2A8), UL64(0x81C2C92E47EDAEE6), UL64(0x92722C851482353B), UL64(0xA2BFE8A14CF10364), UL64(0xA81A664BBC423001), UL64(0xC24B8B70D0F89791), UL64(0xC76C51A30654BE30), UL64(0xD192E819D6EF5218), UL64(0xD69906245565A910), UL64(0xF40E35855771202A), UL64(0x106AA07032BBD1B8), UL64(0x19A4C116B8D2D0C8), UL64(0x1E376C085141AB53), UL64(0x2748774CDF8EEB99), UL64(0x34B0BCB5E19B48A8), UL64(0x391C0CB3C5C95A63), UL64(0x4ED8AA4AE3418ACB), UL64(0x5B9CCA4F7763E373), UL64(0x682E6FF3D6B2B8A3), UL64(0x748F82EE5DEFB2FC), UL64(0x78A5636F43172F60), UL64(0x84C87814A1F0AB72), UL64(0x8CC702081A6439EC), UL64(0x90BEFFFA23631E28), UL64(0xA4506CEBDE82BDE9), UL64(0xBEF9A3F7B2C67915), UL64(0xC67178F2E372532B), UL64(0xCA273ECEEA26619C), UL64(0xD186B8C721C0C207), UL64(0xEADA7DD6CDE0EB1E), UL64(0xF57D4F7FEE6ED178), UL64(0x06F067AA72176FBA), UL64(0x0A637DC5A2C898A6), UL64(0x113F9804BEF90DAE), UL64(0x1B710B35131C471B), UL64(0x28DB77F523047D84), UL64(0x32CAAB7B40C72493), UL64(0x3C9EBE0A15C9BEBC), UL64(0x431D67C49C100D4C), UL64(0x4CC5D4BECB3E42B6), UL64(0x597F299CFC657E2A), UL64(0x5FCB6FAB3AD6FAEC), UL64(0x6C44198C4A475817) }; void crypto_sha384_sha512_init(sha512_ctx_t *ctx, int32_t is_384) { SHA512_VALIDATE( ctx != NULL ); memset( ctx, 0, sizeof( sha512_ctx_t ) ); ctx->total[0] = 0; ctx->total[1] = 0; if( is_384 == 0 ) { /* SHA-512 */ ctx->state[0] = UL64(0x6A09E667F3BCC908); ctx->state[1] = UL64(0xBB67AE8584CAA73B); ctx->state[2] = UL64(0x3C6EF372FE94F82B); ctx->state[3] = UL64(0xA54FF53A5F1D36F1); ctx->state[4] = UL64(0x510E527FADE682D1); ctx->state[5] = UL64(0x9B05688C2B3E6C1F); ctx->state[6] = UL64(0x1F83D9ABFB41BD6B); ctx->state[7] = UL64(0x5BE0CD19137E2179); } else { /* SHA-384 */ ctx->state[0] = UL64(0xCBBB9D5DC1059ED8); ctx->state[1] = UL64(0x629A292A367CD507); ctx->state[2] = UL64(0x9159015A3070DD17); ctx->state[3] = UL64(0x152FECD8F70E5939); ctx->state[4] = UL64(0x67332667FFC00B31); ctx->state[5] = UL64(0x8EB44A8768581511); ctx->state[6] = UL64(0xDB0C2E0D64F98FA7); ctx->state[7] = UL64(0x47B5481DBEFA4FA4); } ctx->is_384 = is_384; } void crypto_sha512_init( sha512_ctx_t *ctx ) { crypto_sha384_sha512_init(ctx, 0); } static int32_t local_sha512_process( sha512_ctx_t *ctx, const uint8_t data[128] ) { int32_t i; uint64_t temp1, temp2, W[80]; uint64_t A, B, C, D, E, F, G, H; SHA512_VALIDATE_RET( ctx != NULL ); SHA512_VALIDATE_RET( (const uint8_t *)data != NULL ); #define SHR(x,n) (x >> n) #define ROTR(x,n) (SHR(x,n) | (x << (64 – n))) #define S0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7)) #define S1(x) (ROTR(x,19) ^ ROTR(x,61) ^ SHR(x, 6)) #define S2(x) (ROTR(x,28) ^ ROTR(x,34) ^ ROTR(x,39)) #define S3(x) (ROTR(x,14) ^ ROTR(x,18) ^ ROTR(x,41)) #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z))) #define P(a,b,c,d,e,f,g,h,x,K) \ { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } for( i = 0; i < 16; i++ ) { GET_UINT64_BE( W[i], data, i << 3 ); } for( ; i < 80; i++ ) { W[i] = S1(W[i – 2]) + W[i – 7] + S0(W[i – 15]) + W[i – 16]; } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; i = 0; do { P( A, B, C, D, E, F, G, H, W[i], K[i] ); i++; P( H, A, B, C, D, E, F, G, W[i], K[i] ); i++; P( G, H, A, B, C, D, E, F, W[i], K[i] ); i++; P( F, G, H, A, B, C, D, E, W[i], K[i] ); i++; P( E, F, G, H, A, B, C, D, W[i], K[i] ); i++; P( D, E, F, G, H, A, B, C, W[i], K[i] ); i++; P( C, D, E, F, G, H, A, B, W[i], K[i] ); i++; P( B, C, D, E, F, G, H, A, W[i], K[i] ); i++; } while( i < 80 ); ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; return( 0 ); } /* * SHA-512 process buffer */ void crypto_sha512_update( sha512_ctx_t *ctx, const uint8_t *data, uint32_t len ) { int32_t ret; uint32_t fill; uint32_t left; SHA512_VALIDATE( ctx != NULL ); SHA512_VALIDATE( len == 0 || data != NULL ); left = (uint32_t) (ctx->total[0] & 0x7F); fill = 128 – left; ctx->total[0] += (uint64_t) len; if( ctx->total[0] < (uint64_t) len ) { ctx->total[1]++; } if( left && len >= fill ) { memcpy( (void *) (ctx->buffer + left), data, fill ); if( ( ret = local_sha512_process( ctx, ctx->buffer ) ) != 0 ) { /* error */ return ; } data += fill; len -= fill; left = 0; } while( len >= 128 ) { if( ( ret = local_sha512_process( ctx, data ) ) != 0 ) { /* error */ return ; } data += 128; len -= 128; } if( len > 0 ) { memcpy( (void *) (ctx->buffer + left), data, len ); } } /* * SHA-512 final digest */ void crypto_sha512_final( sha512_ctx_t *ctx, uint8_t *digest ) { int32_t ret; unsigned used; uint64_t high, low; SHA512_VALIDATE( ctx != NULL ); SHA512_VALIDATE( (uint8_t *)digest != NULL ); /* * Add padding: 0x80 then 0x00 until 16 bytes remain for the length */ used = ctx->total[0] & 0x7F; ctx->buffer[used++] = 0x80; if( used <= 112 ) { /* Enough room for padding + length in current block */ memset( ctx->buffer + used, 0, 112 – used ); } else { /* Well need an extra block */ memset( ctx->buffer + used, 0, 128 – used ); if( ( ret = local_sha512_process( ctx, ctx->buffer ) ) != 0 ) { /* error */ return ; } memset( ctx->buffer, 0, 112 ); } /* * Add message length */ high = ( ctx->total[0] >> 61 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); PUT_UINT64_BE( high, ctx->buffer, 112 ); PUT_UINT64_BE( low, ctx->buffer, 120 ); if( ( ret = local_sha512_process( ctx, ctx->buffer ) ) != 0 ) { /* error */ return ; } /* * Output final state */ PUT_UINT64_BE( ctx->state[0], digest, 0 ); PUT_UINT64_BE( ctx->state[1], digest, 8 ); PUT_UINT64_BE( ctx->state[2], digest, 16 ); PUT_UINT64_BE( ctx->state[3], digest, 24 ); PUT_UINT64_BE( ctx->state[4], digest, 32 ); PUT_UINT64_BE( ctx->state[5], digest, 40 ); if( ctx->is_384 == 0 ) { PUT_UINT64_BE( ctx->state[6], digest, 48 ); PUT_UINT64_BE( ctx->state[7], digest, 56 ); } }测试用例
针对SHA512导出的三个接口,我编写了以下测试用例:
复制 #include #include #include “sha512.h” #include “convert.h” int log_hexdump(const char *title, const unsigned char *data, int len) { char str[160], octet[10]; int ofs, i, k, d; const unsigned char *buf = (const unsigned char *)data; const char dimm[] = “+——————————————————————————+”; printf(“%s (%d bytes):\r\n”, title, len); printf(“%s\r\n”, dimm); printf(“| Offset : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0123456789ABCDEF |\r\n”); printf(“%s\r\n”, dimm); for (ofs = 0; ofs < (int)len; ofs += 16) { d = snprintf( str, sizeof(str), “| %08X: “, ofs ); for (i = 0; i < 16; i++) { if ((i + ofs) < (int)len) { snprintf( octet, sizeof(octet), “%02X “, buf[ofs + i] ); } else { snprintf( octet, sizeof(octet), ” ” ); } d += snprintf( &str[d], sizeof(str) – d, “%s”, octet ); } d += snprintf( &str[d], sizeof(str) – d, ” ” ); k = d; for (i = 0; i < 16; i++) { if ((i + ofs) < (int)len) { str[k++] = (0x20 <= (buf[ofs + i]) && (buf[ofs + i]) <= 0x7E) ? buf[ofs + i] : .; } else { str[k++] = ; } } str[k] = \0; printf(“%s |\r\n”, str); } printf(“%s\r\n”, dimm); return 0; } int main(int argc, const char *argv[]) { const char *data = “C1D0F8FB4958670DBA40AB1F3752EF0D”; const char *digest_exp_str = “D2A72FDEFB6C5B3C8DB639869C6BC756EBD11B1D152B29CF55011C31DE0F3807D21C357C583619EE9006B7E4023042200394DC1DDE913463EC6000AA472D8D24”; uint8_t digest_calc[SHA512_DIGEST_LEN]; uint8_t digest_exp_hex[SHA512_DIGEST_LEN]; sha512_ctx_t ctx; const char *p_calc = data; uint8_t data_bytes[128]; uint16_t len_bytes; char data_str[128]; if (argc > 1) { p_calc = argv[1]; } utils_hex_string_2_bytes(data, data_bytes, &len_bytes); log_hexdump(“data_bytes”, data_bytes, len_bytes); utils_bytes_2_hex_string(data_bytes, len_bytes, data_str); printf(“data_str: %s\n”, data_str); if (!strcmp(data, data_str)) { printf(“hex string – bytes convert OK\n”); } else { printf(“hex string – bytes convert FAIL\n”); } crypto_sha512_init(&ctx); crypto_sha512_update(&ctx, (uint8_t *)p_calc, strlen(p_calc)); crypto_sha512_final(&ctx, digest_calc); utils_hex_string_2_bytes(digest_exp_str, digest_exp_hex, &len_bytes); if (len_bytes == sizeof(digest_calc) && !memcmp(digest_calc, digest_exp_hex, sizeof(digest_calc))) { printf(“SHA512 digest test OK\n”); log_hexdump(“digest_calc”, digest_calc, sizeof(digest_calc)); } else { log_hexdump(“digest_calc”, digest_calc, sizeof(digest_calc)); log_hexdump(“digest_exp”, digest_exp_hex, sizeof(digest_exp_hex)); printf(“SHA512 digest test FAIL\n”); } return 0; }测试用例比较简单,就是对字符串C1D0F8FB4958670DBA40AB1F3752EF0D进行SHA1运算,期望的摘要结果的hexstring是D2A72FDEFB6C5B3C8DB639869C6BC756EBD11B1D152B29CF55011C31DE0F3807D21C357C583619EE9006B7E4023042200394DC1DDE913463EC6000AA472D8D24
,这个期望值是用算法工具算出来的。
先用API接口算出摘要值,再与期望值比较,这里有个hexstringtobyte的转换,如果比较一致则表示API计算OK;反之,接口计算失败。
同时,也欢迎大家设计提供更多的测试案例代码。github仓库
以上代码和测试用例,及编译运行等,可以参考我的github仓库,有详细的流程介绍,欢迎大家交流讨论。如果有帮助到你的话,记得帮忙点亮一颗星哦。
更多参考链接
[1] 【安全算法的github仓库】
[2] 【安全算法之概述】一文带你简要了解常见常用的安全算法免责声明:文章内容来自互联网,本站不对其真实性负责,也不承担任何法律责任,如有侵权等情况,请与本站联系删除。
转载请注明出处:【安全算法之SHA512】SHA512摘要运算C语言源码实现-2种常用的摘要算法是什么 https://www.yhzz.com.cn/a/7632.html