一种基于卷积多层感知器(MLP)改进U型架构的方法-多层感知网络的特点

随着医学图像的解决方案变得越来越适用,我们更需要关注使深度网络轻量级、快速且高效的方法。具有高推理速度的轻量级网络可以被部署在手机等设备上,例如 POCUS(point-of-care ultrasound)被用于检测和诊断皮肤状况。这就是 UNeXt 的动机。

方法概述

之前我们解读过基于 Transformer 的 U-Net 变体,近年来一直是领先的医学图像分割方法,但是参数量往往不乐观,计算复杂,推理缓慢。这篇文章提出了基于卷积多层感知器(MLP)改进 U 型架构的方法,可以用于图像分割。设计了一个 tokenized MLP 块有效地标记和投影卷积特征,使用 MLPs 来建模表示。这个结构被应用到 U 型架构的下两层中(这里我们假设纵向一共五层)。

文章中提到,为了进一步提高性能,建议在输入到 MLP 的过程中改变输入的通道,以便专注于学习局部依赖关系特征。还有额外的设计就是跳跃连接了,并不是我们主要关注的地方。最终,UNeXt 将参数数量减少了 72 倍,计算复杂度降低了 68 倍,推理速度提高了 10 倍,同时还获得了更好的分割性能,如下图所示。

一种基于卷积多层感知器(MLP)改进U型架构的方法-多层感知网络的特点

UNeXt 架构

UNeXt 的设计如下图所示。纵向来看,一共有两个阶段,普通的卷积和 Tokenized MLP 阶段。其中,编码器和解码器分别设计两个 Tokenized MLP 块。每个编码器将分辨率降低两倍,解码器工作相反,还有跳跃连接结构。每个块的通道数(C1-C5)被设计成超参数为了找到不掉点情况下最小参数量的网络,对于使用 UNeXt 架构的实验,遵循 C1 = 32、C2 = 64、C3 = 128、C4 = 160 和 C5 = 256。

一种基于卷积多层感知器(MLP)改进U型架构的方法-多层感知网络的特点

TokMLP 设计思路

关于 Convolutional Stage 我们不做过多介绍了,在这一部分重点专注 Tokenized MLP Stage。从上一部分的图中,可以看到 Shifted MLP 这一操作,其实思路类似于 Swin transformer,引入基于窗口的注意力机制,向全局模型中添加更多的局域性。下图的意思是,Tokenized MLP 块有 2 个 MLP,在一个 MLP 中跨越宽度移动特征,在另一个 MLP 中跨越高度移动特征,也就是说,特征在高度和宽度上依次移位。

论文中是这么说的:“我们将特征分成 h 个不同的分区,并根据指定的轴线将它们移到 j=5 的位置”。其实就是创建了随机窗口,这个图可以理解为灰色是特征块的位置,白色是移动之后的 padding。一种基于卷积多层感知器(MLP)改进U型架构的方法-多层感知网络的特点

解释过 Shifted MLP 后,我们再看另一部分:tokenized MLP block。首先,需要把特征转换为 tokens(可以理解为 Patch Embedding 的过程)。为了实现 tokenized 化,使用 kernel size 为 3 的卷积,并将通道的数量改为 E,E 是 embadding 嵌入维度( token 的数量),也是一个超参数。然后把这些 token 送到上面提到的第一个跨越宽度的 MLP 中。

这里会产生了一个疑问,关于 kernel size 为 3 的卷积,使用的是什么样的卷积层?答:这里还是普通的卷积,文章中提到了 DWConv(DepthWise Conv),是后面的特征通过 DW-Conv 传递。使用 DWConv 有两个原因:(1)它有助于对 MLP 特征的位置信息进行编码。MLP 块中的卷积层足以编码位置信息,它实际上比标准的位置编码表现得更好。像 ViT 中的位置编码技术,当测试和训练的分辨率不一样时,需要进行插值,往往会导致性能下降。(2)DWConv 使用的参数数量较少。

这时我们得到了 DW-Conv 传递过来的特征,然后使用 GELU 完成激活。接下来,通过另一个 MLP(跨越height)传递特征,该 MLP 把进一步改变了特征尺寸。在这里还使用一个残差连接,将原始 token 添加为残差。然后我们利用 Layer Norm(LN),将输出特征传递到下一个块。LN 比 BN 更可取,因为它是沿着 token 进行规范化,而不是在 Tokenized MLP 块的整个批处理中进行规范化。上面这些就是一个 tokenized MLP block 的设计思路。

此外,文章中给出了 tokenized MLP block 涉及的计算公式:

一种基于卷积多层感知器(MLP)改进U型架构的方法-多层感知网络的特点

其中 T 表示 tokens,H 表示高度,W 表示宽度。值得注意的是,所有这些计算都是在 embedding 维度 H 上进行的,它明显小于特征图的维度 HN×HN,其中 N 取决于 block 大小。在下面的实验部分,文章将 H 设置为 768。

实验部分

实验在 ISIC 和 BUSI 数据集上进行,可以看到,在 GLOPs、性能和推理时间都上表现不错。

一种基于卷积多层感知器(MLP)改进U型架构的方法-多层感知网络的特点

下面是可视化和消融实验的部分。可视化图可以发现,UNeXt 处理的更加圆滑和接近真实标签。

消融实验可以发现,从原始的 UNet 开始,然后只是减少过滤器的数量,发现性能下降,但参数并没有减少太多。接下来,仅使用 3 层深度架构,既 UNeXt 的 Conv 阶段。显着减少了参数的数量和复杂性,但性能降低了 4%。加入 tokenized MLP block 后,它显着提高了性能,同时将复杂度和参数量是一个最小值。

接下来,我们将 DWConv 添加到 positional embedding,性能又提高了。接下来,在 MLP 中添加 Shifted 操作,表明在标记化之前移位特征可以提高性能,但是不会增加任何参数或复杂性。注意:Shifted MLP 不会增加 GLOPs。

一种基于卷积多层感知器(MLP)改进U型架构的方法-多层感知网络的特点

一些理解和总结

在这项工作中,提出了一种新的深度网络架构 UNeXt,用于医疗图像分割,专注于参数量的减小。UNeXt 是一种基于卷积和 MLP 的架构,其中有一个初始的 Conv 阶段,然后是深层空间中的 MLP。具体来说,提出了一个带有移位 MLP 的标记化 MLP 块。在多个数据集上验证了 UNeXt,实现了更快的推理、更低的复杂性和更少的参数数量,同时还实现了最先进的性能。

我在读这篇论文的时候,直接注意到了它用的数据集。我认为 UNeXt 可能只适用于这种简单的医学图像分割任务,类似的有 Optic Disc and Cup Seg,对于更复杂的,比如血管,软骨,Liver Tumor,kidney Seg 这些,可能效果达不到这么好,因为运算量被极大的减少了,每个 convolutional 阶段只有一个卷积层。MLP 魔改 U-Net 也算是一个尝试,在 Tokenized MLP block 中加入 DWConv 也是很合理的设计。

审核编辑:刘清

免责声明:文章内容来自互联网,本站不对其真实性负责,也不承担任何法律责任,如有侵权等情况,请与本站联系删除。
转载请注明出处:一种基于卷积多层感知器(MLP)改进U型架构的方法-多层感知网络的特点 https://www.yhzz.com.cn/a/7454.html

上一篇 2023-04-18
下一篇 2023-04-18

相关推荐

联系云恒

在线留言: 我要留言
客服热线:400-600-0310
工作时间:周一至周六,08:30-17:30,节假日休息。