单端信号
单端信号是相对于差分信号而言的,单端输入指信号由一个参考端和一个信号端构成,参考端一般为地端。
差分信号
差分传输是一种信号传输的技术,区别于传统的一根信号线一根地线的做法(单端信号),差分传输在这两根线上都传输信号,这两个信号的振幅相等,相位相反。 在这两根线上传输的信号就是差分信号。
差分与单端信号比较
差分信号与单端信号走线的做法相比,其优缺点分别是:
优点
1、抗干扰能力强。 干扰噪声一般会等值、同时被加载到两根信号线上,而其差值为0,即,噪声对信号的逻辑意义不产生影响。
2、能有效抑制电磁干扰(EMI)。 由于两根线靠得很近且信号幅值相等,这两根线与地线之间的耦合电磁场的幅值也相等,同时他们的信号极性相反,其电磁场将相互抵消。 因此对外界的电磁干扰也小。
3、时序定位准确。 差分信号的接受端是两根线上的信号幅值之差发生正负跳变的点,作为判断逻辑0/1跳变的点的。 而普通单端信号以阈值电压作为信号逻辑0/1的跳变点,受阈值电压与信号幅值电压之比的影响较大,不适合低幅度的信号。
缺点
若电路板的面积非常紧张,单端信号可以只有一根信号线,地线走地平面,而差分信号一定要走两根等长、等宽、紧密靠近、且在同一层面的线。 这样的情况常常发生在芯片的管脚间距很小,以至于只能穿过一根走线的情况下。
基本区别
不说理论上的定义,说实际的。
单端信号指的是用一个线传输的信号,一根线没参考点怎么会有信号呢? easy,参考点就是地啊。 也就是说,单端信号是在一根导线上传输的与地之间的电平差。 那么当你把信号从A点传递到B点的时候,有一个前提就是A点和B点的地电势应该差不多是一样的,为啥说差不多呢,后面再详细说。
差分信号指的是用两根线传输的信号,传输的是两根信号之间的电平差。 当你把信号从A点传递到B点的时候,A点和B点的地电势可以一样也可以不一样,但是A点和B点的地电势差有一个范围,超过这个范围就会出问题了。
传输上的差别
单端信号的优点是,省钱~方便~
大部分的低频电平信号都是使用单端信号进行传输的。 一个信号一根线,最后,把两边的地用一根线一连,完事。 缺点在不同应用领域暴露的不一样,归结起来,最主要的一个方面就是,抗干扰能力差。
首先说最大的一个问题,地电势差以及地一致性。 大家都认为地是0V,实际上,真正的应用中地是千奇百怪变化莫测的一个东西,我想我会专门写一些地方面的趣事。 比如A点到B点之间,有那么一根线,用来连接两个系统之间的地,那么如果这根线上的电流很大时,两点间的地电势可能就不可忽略了,这样一个信号,从A的角度看起来是1V,从B的角度看起来可能只有0.8V了,这可不是一个什么好事情,这就是地电势差对单端信号的影响。 接着说地一致性。 实际上很多时候这个地上由于电流忽大忽小,布局结构远远近近, 地上会产生一定的电压波动,这也会影响单端信号的质量。
差分信号在这一点有优势,由于两个信号都是相对于地的 ,当地电势发生变化时,两个信号同时上下浮动(当然是理想状态下), 差分两根线之间的电压差却很少发生变化,这样信号质量不就高了吗? 其次就是传输过程中的干扰,当一根导线穿过某个线圈时,且这根线圈上通着交流电时,这根导线上会产生感应电动势~~好简单的道理,实际上工业现场遇到的大部分。 问题就是这么简单,可是你无法抗拒~ 如果是单端信号,产生多少,就是多少,这就是噪声你毫无办法。 但是如果是差分信号,你就可以考虑了,为啥呢,两根导线是平行传输的, 每根导线上产生的感应电动势不是一样吗,两个一减,它不就没了吗~ 确实,同样的情况下,传输距离较长时,差分信号具有更强的驱动能力、更强的抗干扰能力,同样的,当你传输的信号会对其他设备有干扰时,差分信号也比单端信号产生的信号相对小,也就是常说的EMI特性。
使用时需要注意
由于差分比单端有不少好处,在模拟信号传输中很多人愿意使用差分信号,比如桥式应变片式力传感器,其输出信号满量程时有的也只有2mV,如果使用单端信号传输,那么这个信号只要电源的纹波就能把他吃光。 所以实际上,都是用仪表运方进行放大后,再进行处理。 而仪表运方正是处理差分信号最有力的几个工具之一。 但是,使用差分信号时,一定要注意一个问题,共模电压范围。 也就是说,这两根线上的电压,相对于系统的地,还是不能太大。 你传输0.1V的信号没问题,但是如果一根是 1000.0 另外一根是 1000.1,那就不好玩了,问题在于,在很多场合下使用差分信号都是为了不让两个系统的地简单的共在一起,更不能把差分信号中的一根直接接在本地系统的地上,那不白费劲吗–又成单端了,那么如何抑制共模电压呢? 其实也挺简单的,将两根线都通过一个足够大的电阻,连接到系统的地上。 这就像一根拴在风筝上的线,我在地上跑跑跳跳,不会影响风筝的高度 但是你永远逃不出我的视线,而我的视线,在电子行业,叫共模电压范围~~嘿嘿 ,最后,回答一个网友的问题:单端转差分怎么转。 单单将单端信号用反向跟随器跟随并不是不行,但是差分信号被平白的放大了2倍~~ 常见的用仪表运方+普通运方搭建的单端转差分是个很好的例子。
关于差分的五个常见误区
1、认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。 造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。 差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。 地平面的部分回流抵消并不代表差分电路就不以参考平面作为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路. 在PCB电路设计中,一般差分走线之间的耦合较小,往往只占 10~20%的耦合度,更多的还是对地的耦合,所以差分走线的主要回流路径还是存在于地平面。 当地平面发生不连续的时候,无参考平面的区域,差分走线之间的耦合才会提供主要的回流通路,尽管参考平面的不连续对差分走线的影响没有对普通的单端走线来的严重,但还是会降低差分信号的质量,增加 EMI,要尽量避免。 也有些设计人员认为,可以去掉差分走线下方的参考平面,以抑制差分传输中的部分共模信号,但从理论上看这种做法是不可取的,阻抗如何控制? 不给共模信号提供地阻抗回路,势必会造成 EMI 辐射,这种做法弊大于利。
2、认为保持等间距比匹配线长更重要。 在实际的PCB布线中,往往不能同时满足差分设计的要求。 由于管脚分布,过孔,以及走线空间等因素存在,必须通过适当的绕线才能达到线长匹配的目的,但带来的结果必然是差分对的部分区域无法平行。 PCB 差分走线的设计中最重要的规则就是匹配线长,其它的规则都可以根据设计要求和实际应用进行灵活处理。
3、认为差分走线一定要靠得很近。 让差分走线靠近无非是为了增强他们的耦合,既可以提高对噪声的免疫力,还能充分利用磁场的相反极性来抵消对外界的电磁干扰。 虽说这种做法在大多数情况下是非常有利的,但不是绝对的,如果能保证让它们得到充分的屏蔽,不受外界干扰,那么我们也就不需要再让通过彼此的强耦合达到抗干扰和抑制 EMI 的目的了。 如何才能保证差分走线具有良好的隔离和屏蔽呢? 增大与其它信号走线的间距是最基本的途径之一,电磁场能量是随着距离呈平方关系递减的,一般线间距超过4 倍线宽时,它们之间的干扰就极其微弱了,基本可以忽略。 此外,通过地平面的隔离也可以起到很好的屏蔽作用,这种结构在高频的(10G 以上)IC封装PCB 设计中经常会采用,被称为CPW结构,可以保证严格的差分阻抗控制(2Z0)。
差分走线也可以走在不同的信号层中,但一般不建议这种走法,因为不同的层产生的诸如阻抗、过孔的差别会破坏差模传输的效果,引入共模噪声。 此外,如果相邻两层耦合不够紧密的话,会降低差分走线抵抗噪声的能力,但如果能保持和周围走线适当的间距,串扰就不是个问题。 在一般频率(GHz 以下),EMI 也不会是很严重的问题,实验表明,相距 500Mils 的差分走线,在3 米之外的辐射能量衰减已经达到 60dB,足以满足 FCC的电磁辐射标准,所以设计者根本不用过分担心差分线耦合不够而造成电磁不兼容问题。
4、差分曼切斯特编码并不是差分信号的一种,它指的是用在每一位开始时的电平跳变来表示逻辑状态“0”,不跳变来表示逻辑状态“1”。 但每一位中间的跳变是用来做同步时钟,没有逻辑意义。
5、双绞线上面走的不一定是差分信号,单端信号在双绞线上的电磁辐射也比平行走线的辐射小。
审核编辑:汤梓红
免责声明:文章内容来自互联网,本站不对其真实性负责,也不承担任何法律责任,如有侵权等情况,请与本站联系删除。
转载请注明出处:如何辨析单端信号和差分信号-差分放大器和单端放大器的区别 https://www.yhzz.com.cn/a/3491.html