[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用

一、学习目标 了解opencv中图像的逻辑运算 了解opencv中逻辑运算的应用 目录

[python opencv 计算机视觉零基础到实战] 一、opencv的helloworld

[python opencv 计算机视觉零基础到实战] 二、 opencv文件格式与摄像头读取

[python opencv 计算机视觉零基础到实战] 三、numpy与图像编辑

[python opencv 计算机视觉零基础到实战] 四、了解色彩空间及转换

[python opencv 计算机视觉零基础到实战] 五、对象追踪

[python opencv 计算机视觉零基础到实战] 六、图像运算

如有错误欢迎指出~

二、了解OpenCV中图像运算的运用

2.1 了解and逻辑运算

在上一节中,我们了解了基本的图像运算,这一节将了解在opencv将两张图片进行逻辑运算。逻辑运算在编程中较为常见的一种基本运算,在此不在进行赘述。我们首先了解一下opencv中的逻辑与运算,opencv中逻辑与运算与我们基本的逻辑与运算一致,也就是1 and 1为1,1 and 0 为0。我们可以通过一个小示例来直观的感受opencv的and运算方式。

在opencv中,对两个图片进行逻辑与运算需要使用bitwise_and方法。bitwise_and方法接收2个图片数组为参数。首先我们读取2个图片1bit与1bit3。

import cv2 img1 = cv2.imread(rC:\Users\mx\Desktop\1bit.jpg) img3 = cv2.imread(rC:\Users\mx\Desktop\1bit3.jpg) cv2.imshow(“img1”, img1) cv2.imshow(“img3”, img3) cv2.waitKey (0) cv2.destroyAllWindows()

得到两张图片如下:

[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用 [python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用随后使用bitwise_and方法对两张图片进行运算: import cv2 img1 = cv2.imread(rC:\Users\mx\Desktop\1bit.jpg) img3 = cv2.imread(rC:\Users\mx\Desktop\1bit3.jpg) and_img=cv2.bitwise_and(img3,img1) cv2.namedWindow(“and_img”,cv2.WINDOW_NORMAL) cv2.imshow(“img1”, img1) cv2.imshow(“img3”, img3) cv2.imshow(“and_img”, and_img) cv2.waitKey (0) cv2.destroyAllWindows()

以上代码中关键代码为and_img=cv2.bitwise_and(img3,img1),在这一串代码中对img3与img1进行了逻辑与运算。由于img1图片只有“我是1_bit”文字为白色,其他区域为黑色,我们可以当成“我偶是1_bit”这个内容区域的值为1,然后黑色区域位置为0。这时黑色区域与img3图片的通道区域值进行计算,那就是0与一个内容值进行逻辑与计算,那么结果为0,img1的文字部分值为1,与img3图片相同的位置进行逻辑与计算,那么保留结果。这时,运算后的图片则应该是生成一张带有“我是1_bit”字样的图片,并且在字样区域内带有img3图片内容。结果如下:

[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用

那将图片img1改成如下情况呢:

[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用

这时“我是1_bit”’字样区域的内容将会与另一张图片计算后排出,这时结果将会产生一个0值的空缺部分,由于空白部分的值为1,逻辑运算后将会保留白色区域的另外一张图片内容。

结果如下:

[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用

2.2 了解or逻辑运算

在opencv中既然存在and逻辑与,那么逻辑或大几率存在是可能的。在opencv中,逻辑或运算与逻辑与运算相反,使用bitwise_or方法,传入参数也是两张用于逻辑计算的图片。使用示例如下:

import cv2 img1 = cv2.imread(rC:\Users\mx\Desktop\1bit.jpg) img3 = cv2.imread(rC:\Users\mx\Desktop\1bit3.jpg) and_img=cv2.bitwise_or(img3,img1) cv2.namedWindow(“and_img”,cv2.WINDOW_NORMAL) cv2.imshow(“img1”, img1) cv2.imshow(“img3”, img3) cv2.imshow(“and_img”, and_img) cv2.waitKey (0) cv2.destroyAllWindows()

结果如下:

[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用

以上使用的图片与2.1示例中图片一致。逻辑或运算,只要不都为0则是1。图片img1中,字体为白,其它部分为0,但由于进行逻辑运算时,黑色部分进行计算的区域对应img3是有内容的,也就是说img3中该部分的内容非0。那么,结果就是img3中的图片内容,最终将会得到如上结果。

2.3 了解取反运算

取反运算非常简单,就是黑的边白,白的变黑;当然这样说不严谨,但是却很好反应了取反这个操作的结果;例如0取反则是1,1取反则是0。取反使用bitwise_not方法,bitwise_not方法接收一个图片参数。以下方法依旧使用名为1bit的图片。图片为了方便查看在代码中显示了原图内容。

import cv2 img1 = cv2.imread(rC:\Users\mx\Desktop\1bit.jpg) not_img=cv2.bitwise_not(img1) cv2.imshow(“img1 “, img1 ) cv2.imshow(“not_img”, not_img) cv2.waitKey (0) cv2.destroyAllWindows()

结果如下:

[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用

2.4 逻辑运算有什么用呢?

我们在前两节中的值,可以通过inRange方法提取图片中的指定颜色内容,但是提取出来后将会得到一个黑白图片,那么如何对改图片进行颜色的还原呢?想必有些同学学完逻辑运算后觉得应该是找到了方法。是的,我们可以通过逻辑运算对图片进行颜色上的还原。因为我们提取出来的图片是黑白图片,提取出来指定颜色内容的区域为白色,那么只需要将图片与原图进行and运算,那么重合的部分就会显示出来,这个时候就可以还原提取后图片的颜色。但是,我们是哪个颜色提取出来的图片是单通道的灰度图片,怎么办呢?不急,首先我们把之前的代码贴上,方便查看:

import cv2 import numpy as np capture=cv2.VideoCapture(rC:\Users\mx\Desktop\hmbb.mp4) min=np.array([26,43,46]) max=np.array([34,255,255]) while True: r,img=capture.read() if r==False: break hsv_img=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) flag=cv2.inRange(hsv_img,lowerb=min,upperb=max) cv2.imshow(“flag”, flag) cv2.imshow(“hmbb”, img) k=cv2.waitKey (40) if k==27: break cv2.destroyAllWindows()

以上代码已经在前两节“对象跟踪”小节讲解,那么现在只需要对提取到的图片与原图进行一个and逻辑运算即可,添加以下代码:

cflag=cv2.bitwise_and(img,img,mask=flag)

以上代码bitwise_and添加了两个相同的img参数,为什么添加呢?不急,下一节将会告诉大家。我们现在着重查看mask参数,mask参数赋值为提取到的flag目标区域的图片,表示遮罩。将会在之前传入的img中剔除不要的区域,只保留白色的区域,传入的类型是8位单通道的灰度图像。这时我们就可以将flag值赋值给mask,bitwise_and将会从img图片中做逻辑运算去除我们不需要的黑色区域的图片内容,这时将会得到一个颜色比较正常的海绵宝宝。完整代码如下:

import cv2 import numpy as np capture=cv2.VideoCapture(rC:\Users\mx\Desktop\hmbb.mp4) img1 = cv2.imread(rC:\Users\mx\Desktop\1bit.jpg) min=np.array([26,43,46]) max=np.array([34,255,255]) while True: r,img=capture.read() if r==False: break hsv_img=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) flag=cv2.inRange(hsv_img,lowerb=min,upperb=max) cflag=cv2.bitwise_and(img,img,mask=flag) cv2.imshow(“flag”, flag) cv2.imshow(“hmbb”, img) cv2.imshow(“cflag”, cflag) k=cv2.waitKey (40) if k==27: break cv2.destroyAllWindows()

结果如下:

[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用 逻辑运算的更多内容下一节将会讲解。 三、总结 了解了opencv中对图像进行逻辑与运算使用bitwise_and方法 了解了opencv中对图像进行逻辑或运算使用bitwise_or方法 了解了opencv中对图像进行取反运算使用bitwise_not方法 了解了and方法的其他用途,用于mask遮罩剔除不需要的内容

免责声明:文章内容来自互联网,本站不对其真实性负责,也不承担任何法律责任,如有侵权等情况,请与本站联系删除。
转载请注明出处:[python opencv 计算机视觉零基础到实战] 七、逻辑运算与应用 https://www.yhzz.com.cn/a/13332.html

上一篇 2023-05-11
下一篇 2023-05-11

相关推荐

联系云恒

在线留言: 我要留言
客服热线:400-600-0310
工作时间:周一至周六,08:30-17:30,节假日休息。